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The non-integrability and existence of chaotic trajectories in the high-energy zone are proved for a double mathematical pendulum 
with certain constraints on the ratio of the masses. © 1999 Elsevier Science Ltd. All rights reserved. 

The problem of the integrability and non-integrability of natural Lagrangian systems with a compact two-dimensional 
configurational manifold M is associated with the Euler characteristic x(M). As we know [1, 2], when x(M) < 0 
each analytic first integral depends functionally on the energy integral. However, no such topological obstacle to 
integrability exists when x(M) = 0 (M is a two-dimensional toras). The existence of an analytic first integral, 
independent of  the energy integral, for a double mathematical pendulum thus requires further investigation. 

The non-integrability of a double mathematical pendulum for energy values close to the maximum potential 
energy has already been proved [3]. We shall therefore consider a different case. Unlike [3], which uses variational 
methods, we shall employ the methods of perturbation theory, similar to those used in the four vortices problem 
[4]. For sufficiently small ratios of the masses and quite high energy values, we will prove that a double pendulum 
has chaotic trajectories. This result is obtained from an estimate of the Mel'nikov integral. 

Numerical evidence of  the existence of chaotic motions in both energy regimes was obtained in [5]. 
Note that the non-existence of an analytical supplementary first integral for a physical double pendulum was 

proved in [6] with certain assumptions. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

A point mass P1 of  mass ml moves in a vertical plane along a circle of radius It with center O. The Lagrange 
coordinate % is the angle between the vertical and the segment OP t. The point P2 of mass m 2 moves in a vertical 
plane at a constant distance/2 from P1. The Lagrange coordinate q>2 is the angle between OP1 and PIP2. We shall 
consider "fast motion" of the pendulum, corresponding to high kinetic energy. We make the replacement • = 
cot -in, where co is a large parameter. Then the Lagrange function takes the form 

/.,(%, (P2, %,  q)2 ) = T((p2, %,  ~ 2 )  + q U((Pl, q)2 ) (1.1) 

T = ((m I + m 2)12 + 2m21112 eos~P2 + m212)ip 2 / 2 + m212 (l 2 + l I cos~P2)(Pi~2 + m212ip 2 / 2 

U = (m I + n~ ) l  I costPl + m212 cos(cpl + tp2 ) 

where the dots denotes differentiation with respect to T and g is the acceleration due to gravity. 

2. T H E  U N P E R T U R B E D  S Y S T E M  

Ignoring the unimportant multiplier (m1112) -~, the Hamilton function corresponding to the Lagrange function 
(1.1) has the form 

HffiHo+e/fi 

HO = [ll2 p 2 - 2~/Cplp2 + Bp~ 
2~/2A 

/ / i  = -(!  + I~)Cos~, - p/cos(% + cp 2) 

C =  l+costp2,  B=l+l£(l+12+21cos@2), 
t =  12 _ , l?mpg 

[ I m I O) 
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A = 1 + l l s in  2 q)2 

(2.1) 
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We shall assume that e is a small parameter. For the unperturbed Hamiltonian H0 the generalized momentum Pl 
is the first integral. 

We fix the positive number E and consider the constraints on the unperturbed system corresponding to the 
Hamilton function H0, at energy level H0 = E. By Whittaker's method, we can reduce this system to two Hamiltonian 
systems with one degree of freedom, corresponding to the Hamilton functions 

Kd:(P2, ¢#2, E, It) = .~ff Cp2 + "4 A(2EIt 12 - P~ ) 

defined in the region D = {(P2, tP2) G R 2 :]P2I < ~/(2Ela)l}. 
We will consider the Hamiltonian system corresponding to Ko = K~0 (the other case is similar) 

~1 ~2 '  d~, ap2 

This system has a stable equilibrium position 

(p2 =0, p 2 f l ( l + l ) I t ~ ( l + I t ( l + l ) 2 )  - ~  

and hyperbolic equilibria 

¢#2 = +~t, p~ f l ( l -  l)It~-~(l +It(l-  l )2) - ~  

The hyperbolic positions of equilibrium are connected by separatrices 

(2.2) 

For sufficiently small la the separatrices lie in D. To fix our ideas, we will consider the upper separatrix. The 
equations of motion along it have the form 

a~ 2 = a421C 
d~l 4A(l+ll( l- l)2)-It~21C 3 

and the solution ~(¢Pl, 6, la) is obtained by inverting the integral 

tpl(q) 2, 5, It) = 8+s(q~ 2) +O(It), s(q~2) = 2-~//in ! +sin(q~/2) 
1 - s in (92  / 2) 

(2.3) 

where ~i is the initial value. 

3. T H E  M E L ' N I K O V  I N T E G R A L  

We now consider the complete Hamiltonian (2.1). We will solve the equation H = E forpl  

The quantity ~ must be sufficiently small. By restricting the Hamiltonian system to energy level H = E in the 
neighbourhood of separatrix (2.2) we can reduce the system to one-and-a-half-degrees-of-freedom system with 
the Hamilton function 

K(P2, ~P2, ~Pl, E, It, e) = Ko(P2, cp 2, E, It) + f.K! (P2, eP2,fPl, E, It) +...  

K! (P2,  ~ 2 ,  q)l, E, It) = - H  I ( ~ l ,  ¢P2, It)~KO laE 

Representing separatrix (2.2) of the unperturbed system in the form 

P2 = p2(tP2, It), tP2 = eP2(g)l, 8, It) 

we write the Mernikov integral 
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!!!s!!L_aKo% 
39, ah a& acp2 dQl 

Writing the expression in braces in the form 

aKo(P2,~z.E.~)_aKo(P~.~,E.~) 
aE aE 

+ aK,Cp;. us E. 1.0 aHltQ~.Qz. cl) _ ah(Q~. G PI 

aE aQl acpl 

and using explicit expressions for Ka and HI, we obtain 

Using Eqs (2.3) and 

jo” cosxcoss(x)dz = coss(x)dx 

F~~coss(x)dx=211~sinxsins(x)dx 

we obtain 

We will evaluate the integrals I1 and 4 by means of residues, taking the integration contour as a small circle with 
centre z = 0 inside the strip {z E C : Imr E [-x/2, n/2]>. Finally, we find 

Since 1 > 0 when 1 > 0, we have the following theorem. 

Theorem. For any 1 > 0 a u(l) > 0 exists and there is an analytic function 6 : (0, p(l) -+ R, lim,_,$u = 0 for 
which 8(u) is a simple zero of the Mel’nikov integral. 

Hence at very high energies, that is, for sufficiently small E, there is a transversal homoclinic point v,, that is, a 
point of the transversal intersection of the stable and unstable manifolds of the Poincare image Y’, of the system 
with Hamilton function Zf. Hence, there is some power of Y, on an invariant subset in the neighbourhood of the 
set u,.$I$(v~) which is conjugate to a Bernoulli shear on the set of infinite sequences of two symbols [7, 81. In 
particular, the system has no analytic first integrals which are functionally independent of the energy integral. 
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